Recognizing Handwritten Characters

نویسنده

  • Lisa Yan
چکیده

Traditional CNN-based text recognition problems have either been single-character classification like MNIST or complex, stateful full-word classifications like the LSTM approach in Graves et al. I explore a stateless approach to word recognition by using Faster R-CNN’s region proposal network in conjunction with a heuristic to produce word labels from region proposals. While the results are promising for word images that have characters with very little overlap, they fall short for cursive word images, where individual characters require surrounding context to be identified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine Recognition of Hand Written Characters using Neural Networks

Even today in Twenty First Century Handwritten communication has its own stand and most of the times, in daily life it is globally using as means of communication and recording the information like to be shared with others. Challenges in handwritten characters recognition wholly lie in the variation and distortion of handwritten characters, since different people may use different style of hand...

متن کامل

Optimizing Feature Selection for Recognizing Handwritten Arabic Characters

Recognition of characters greatly depends upon the features used. Several features of the handwritten Arabic characters are selected and discussed. An off-line recognition system based on the selected features was built. The system was trained and tested with realistic samples of handwritten Arabic characters. Evaluation of the importance and accuracy of the selected features is made. The recog...

متن کامل

Performance Comparison of Different Image Sizes for Recognizing Unconstrained Handwritten Tamil Characters using SVM

This study describes a system for recognizing offline handwritten Tamil characters using Support Vector Machine (SVM). Data samples are collected from different writers on A4 sized documents. They are scanned using a flat bed scanner at a resolution of 300 dpi and stored as grey scale images. Various preprocessing operations are performed on the digitized image to enhance the quality of the ima...

متن کامل

Implementation of Feed-forward Neural Network Models for Pattern Classification Using Transformation Based Feature Extraction Methods

Automatic recognition of handwritten Hindi characters is a difficult and one of the most interesting research areas of pattern recognition field. A lot of work has been done in this area till date; still it is a subject of active research. Hindi characters are cursive in nature and thus characters may be written in various cursive ways. Characters also show a lot of similar features such as hea...

متن کامل

Deep Convolutional Network for Handwritten Chinese Character Recognition

In this project we explored the performance of deep convolutional neural network on recognizing handwritten Chinese characters. We ran experiments on a 200-class and a 3755-class dataset using convolutional networks with different depth and filter numbers. Experimental results show that deeper network with larger filter numbers give better test accuracy. We also provide a visualization of the l...

متن کامل

On-line Handwritten Arabic Character Recognition using Artificial Neural Network

In this paper, an efficient approach for the recognition of online Arabic handwritten characters is presented. The method employed involves three phases: First, pre-processing in which the original image is transformed into a binary image .Second , training neural networks with feed-forward back propagation algorithm .Finally, the recognition of the character through the use of Neural Network t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016